Division of Nano-quantum Information Science and Technology
Director | Hideaki Takayanagi : Professor, Research Institute for Science and Technology |
---|---|
Research Content | Nanotechnology and its applications to quantum information and electronics |
Objetcitves | Our research division aims at optimization of the operation condition for superconducting, optical and spin qubits. |
Nanotechnology and its applications to quantum information and electronics
Background
In recent years, demonstrations of quantum supremacy by Google and later the University of Science and Technology of China, the establishment of IBM’s commercial quantum computer, and the D-Wave System’s 4,000-bit quantum annealing machines, quantum information processing has made remarkable progress. All of the above systems are based on superconducting qubits, but quantum computing systems based on other systems such as light, semiconductors, and ions are also being actively researched around the world.
Our targets
Our division mainly investigate the superconducting qubit. Qubit cause errors like ordinary classical semiconductor circuits. Malfunction of the qubit also would come from the breakdown of the quantum superposition state. Such phenomenon is called decoherence. The fault-tolerant quantum computer would be realized by employing a quantum error correction procedure, and it would deliver truly practical applications. The division plans to carry out research of several kinds of fault-tolerant quantum circuits with superconducting qubits. It is expected that the fault-tolerant quantum computer would appear by 2050, and we would try to contribute to its realization.
Superconducting qubit is considered as the most suitable platform for the quantum computers. However, it also has its problems. The coherence time of superconducting qubit is still short, for example. Beside the superconducting qubit, qubits based on other physical systems, like photon, ion, atom and electron spin in quantum dot have been investigated earlier. In our division, spin qubit and optical qubit will also be investigated, along with the superconducting qubit.
Moonshot Research & Development Program
The research subject “Developing bosonic code using superconducting resonator” was adopted to the government moonshot research & development program in 2020. The program leader is Dr. Tsai and Drs. Takayanagi, Watabe and Hashizume join this program.
This program continues until 2025(https://ms-iscqc.jp).
Collaboration with the University of Tokyo
Other research activity of the division is the collaborated one with the University of Tokyo. The partner organizations are the Institute for Nano Quantum Information Electronics(http://www.nanoquine.iis.u-tokyo.ac.jp/)and Quantum Innovation Co-creation Center. The research subject is quantum optics utilizing single photon. Drs. Takayanagi, Sanaka and Sadgove join this activity.
Fig.1 Heart of the dilution refrigerator for superconducting qubits’ evaluation. Multiple wideband signal lines can be seen.
Fig.2 2-bit quantum logic gate. Two transmon-type qubits (cross-shaped structures) are connected by a superconducting resonator.
Future Development Goals
This division will contribute to the practical realization of the quantum computer thirty years later.
Message
The research of quantum computer has been very active during the recent years. One of the reasons of the rapid progress is the improvement in coherence time of the qubit due to the advancement of nanotechnology. However, the current status of the quantum circuit is still far from the real implementation. We must accelerate the pace of research and development toward the truly fault-tolerant quantum computer.
Research Division
- Carbon Value Research Center
- Research Division for Advanced Disaster Prevention on cities
- Division of Nanocarbon Research
- Division of Colloid and Interface Science
- Division of Nucleic Acid Drug Development
- Division of Synthetic Biology
- Renewable Energy Science & Technology Research Division
- Division of Biological Environment Innovation
- Statistical Science Research Division
- Research Alliance for Mathematical analysis
- Division of Nano-quantum Information Science and Technology
- Research Group for Advanced Energy Conversion
- Development of superior cell and DDS for regenerative medicine
- Parallel Brain Interaction Sensing Division
- Division of Digital Transformation
- Modern Algebra and Cooperation with Engineering
- Medical Data Science
- Division of Smart Healthcare Engineering
- Division of Implementation of sustainable technology in society
Research Center
Joint Usage / Research Center
The Open Innovation Projects